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1 Convexity of Set Functions and Measuring Type Classes

1.1 Recap + addressing superadditivity with −∞

Let’s fix a mistake from last time: If an are extended reals (i.e. ∈ [−∞,∞) or (−∞,∞])
and satisfy an+m ≥ an + am for all n,m, then Fekete’s lemma says that an

n → supm
am
m ∈

(−∞,∞]. However, there can be problems if −∞ is allowed among ans. For example,

an =

{
0 n even

−∞ n odd

does not satisfy the conclusion of Fekete’s lemma. The fix is that we will need to check
separately that an = −∞ for all sufficiently large n.

Last time, we discussed in what situations we can turn set functions into compatible
point functions. In particular, we had a topological space X, an open cover U , and a map
s : U → [−∞,∞] satisfying:

(S1) If U ⊆ U1 ∪ · · · ∪ Uk, then s(U) ≤ maxi s(Ui).

Then
s(x) = inf{s(U) : U ∈ U , U 3 x},

and s is locally finite if s(x) <∞ for all x. If we define

s(K) = inf{max
i
s(Ui) : K ⊆ U1 ∪ · · · ∪ Uk, Ui ∈ U},

then we had a lemma that said

s(K) = sup{s(x) : x ∈ K}.

If we have the additional property

(S2) s(U) = sup{s(K) : K ⊆ U is compact},

then we proved a lemma which says s(U) = sup{s(x) : x ∈ U}.
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1.2 Concavity of induced point functions

Now we will specialize to the situation where X is a locally convex topological vector space
over R and U is the collection of open, convex sets. Another lemma from last time tells us
that s : X → R is upper semicontinuous, i.e. for all a ∈ [−∞,∞], {s < a} is open.

Lemma 1.1. Suppose a set function s satisfies

s

(
1

2
U +

1

2
V︸ ︷︷ ︸

={ 1
2
u+ 1

2
v:u∈U,v∈V }

)
≥ 1

2
(s(U) + s(V )) ∀U, V ∈ U

and is locally finite. Then the point function s is concave:

s(tx+ (1− t)y) ≥ ts(x) + (1− t)s(y).

Proof. Fix x, y, and let W ∈ U be a neighborhood of w := 1
2x + 1

2y. Then there exist
U, V ∈ U such that U 3 x, V 3 y and 1

2U + 1
2V ⊆W . Therefore,

s(W ) ≥ s
(

1

2
U +

1

2
V

)
≥ 1

2
(s(U) + s(V )) ≥ 1

2
(s(x) + s(y)).

Take the inf over W 3 w to get

s

(
1

2
x+

1

2
y

)
≥ 1

2
(s(x) + s(y)).

Now conclude that
s(tx+ (1− t)y) ≥ ts(x) + (1− t)s(y)

for all dyadic rational t by induction on the dyadic depth of t. For example,

s

(
3

4
x+

1

4
y

)
= s

(
1

2
x+

1

2

(
1

2
x+

1

2
y

))
≥ 1

2
s(x) +

1

2
s

(
1

2
x+

1

2
y

)
≥ 1

2
s(x) +

1

2

(
1

2
s(x) +

1

2
s(y)

)
=

3

4
s(x) +

1

4
s(y).

The general dyadic case is similar.
Finally, we get all t by upper semicontinuity: if tn are dyadic rationals with tn → t,

then
s(tx+ (1− t)y) ≥ lim sup

n
s(tnx+ (1− tn)y).

Now apply the previous case.
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1.3 Measuring type classes in this setting

Here is a setting where we can apply these ideas: Let (M,λ) be a σ-finite measure space,
let X,U be as before, and let ϕ : M → X be a measurable map, where

• “measurable” refers to the Borel σ-algebra of X.

• ϕ takes values inside a subset E ⊆ X such that the restriction of the topology of X
to E is separable and metrizable.

This second condition is a bit technical. Here are some examples:

Example 1.1. E = X = Rd

Example 1.2. Let Z be a compact metric space, and let X = M(Z) be the collection
of signed finite measures on Z with the weak* topology, so U is the collection of weak*
open convex sets. Then take E = P (Z), the subset of probability measures, which is a
weak*-closed convex subset of M(Z) which is metrizable. In this case, we will usually have
M = Z, λ ∈ P (Z), and ϕ sending z 7→ δz.

Example 1.3. Take the same as above, but Z is any complete, separable metric space,
and M(Z) has the topology generated by all evaluations µ 7→

∫
f dµ for f ∈ Cb(Z). Still

restrict ϕ to take values in P (Z). In this situation, P (Z) still has a complete separable
metric, but this is harder; we won’t prove this carefully here.

Values of interest: For U ∈ U , how does

λ×n

({
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

}
︸ ︷︷ ︸

Tn(U)

)

behave? Previously, we had M = A, λ equals counting measure, and ϕ(p) = δp, so
1
n

∑n
i=1 ϕ(pi) was the empirical distribution of p.

Proposition 1.1. There exists some s : U → [−∞,∞] such that

λ×n(Tn(U)) = es(U)n+o(n) ∀U ∈ U .

Proof. Observe that if p ∈ Tn(U) and q ∈ Tm(U) and r = pq is the concatenation, then

1

n+m

n+m∑
i=1

ϕ(ri) =
n

n+m
· 1

n

n∑
i=1

ϕ(pi) +
m

n+m
· 1

m

m∑
i=1

ϕ(qi)

3



lies in U if 1
n

∑n
i=1 ϕ(pi) ∈ U and 1

m

∑m
i=1 ϕ(pi) ∈ U , i.e. Tn+m(U) ⊇ Tn(U)× Tm(U). So

λ×(n+m)(Tn+m(U)) ≥ λ×n(Tn(U)) · λ×m(Tm(U)).

Take logs to get superadditivity. This gives

s(U) = lim
n

1

n
log λ×n(Tn(U))︸ ︷︷ ︸

an/n

= sup
n

1

n
log λ×n(Tn(U)),

provided that either an = −∞ for all n or an 6= −∞ for all sufficiently large n. We will
complete the proof next time.
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