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1 Convexity of Set Functions and Measuring Type Classes

1.1 Recap + addressing superadditivity with —oco

Let’s fix a mistake from last time: If a,, are extended reals (i.e. € [—00,00) or (—oo, o0])

and satisfy apim > an + ap, for all n,m, then Fekete’s lemma says that %" — sup,, “ﬁ S

(—o0, o0]. However, there can be problems if —oo is allowed among a,s. For example,

0 n even
ap =
—00 n odd

does not satisfy the conclusion of Fekete’s lemma. The fix is that we will need to check
separately that a,, = —oo for all sufficiently large n.

Last time, we discussed in what situations we can turn set functions into compatible
point functions. In particular, we had a topological space X, an open cover U, and a map
s:U — [—00, 0] satisfying:

(S1) U C Uy U---UUy, then s(U) < max; s(U;).

Then
s(x) =inf{s(U) : U eU,U > x},

and s is locally finite if s(z) < oo for all . If we define
s(K) = inf{mlaxs(Ui) K CUU---UU, U €U},
then we had a lemma that said
s(K) =sup{s(z) : z € K}.
If we have the additional property
(S2) s(U) =sup{s(K) : K C U is compact},

then we proved a lemma which says s(U) = sup{s(z) : x € U}.



1.2 Concavity of induced point functions

Now we will specialize to the situation where X is a locally convex topological vector space
over R and U is the collection of open, convex sets. Another lemma from last time tells us
that s : X — R is upper semicontinuous, i.e. for all a € [—o00, 0], {s < a} is open.

Lemma 1.1. Suppose a set function s satisfies

s( %U—F%V >Z;(S(U)+5(V)) VU,V e U
—_——

={1u+ivueUpeV}
and is locally finite. Then the point function s is concave:
s(te+ (1 —t)y) > ts(x) + (1 —t)s(y).

Proof. Fix x,y, and let W € U be a neighborhood of w := %x + %y Then there exist
U,V €U such that U >z, V 3 y and U + 3V C W. Therefore,

S(V) > 8 (;m ;v) > L (s(U) +5(V) 2

Take the inf over W 3 w to get

Now conclude that
s(tr+ (1 —t)y) > ts(z) + (1 — t)s(y)
for all dyadic rational ¢ by induction on the dyadic depth of ¢. For example,

B LN (L (L, ]
T\gt TV T\t T\t T oY

> o)+ 5 (350 + 5500
3 1
= 15(@ + 13(1/)~

The general dyadic case is similar.
Finally, we get all ¢t by upper semicontinuity: if ¢, are dyadic rationals with ¢, — t,
then
s(tx 4+ (1 —t)y) > limsup s(t,x + (1 — t,)y).
n

Now apply the previous case. O



1.3 Measuring type classes in this setting

Here is a setting where we can apply these ideas: Let (M, \) be a o-finite measure space,
let X,U be as before, and let ¢ : M — X be a measurable map, where

e “measurable” refers to the Borel o-algebra of X.

e o takes values inside a subset F C X such that the restriction of the topology of X
to F is separable and metrizable.

This second condition is a bit technical. Here are some examples:
Example 1.1. £ = X =R?

Example 1.2. Let Z be a compact metric space, and let X = M(Z) be the collection
of signed finite measures on Z with the weak™ topology, so U is the collection of weak*
open convex sets. Then take E = P(Z), the subset of probability measures, which is a
weak*-closed convex subset of M (Z) which is metrizable. In this case, we will usually have
M =27, X€ P(Z), and ¢ sending z — 9.

Example 1.3. Take the same as above, but Z is any complete, separable metric space,
and M (Z) has the topology generated by all evaluations p — [ fdu for f € Cp(Z). Still
restrict ¢ to take values in P(Z). In this situation, P(Z) still has a complete separable
metric, but this is harder; we won’t prove this carefully here.

Values of interest: For U € U, how does

AX”({pGM”:iZsO(pi)GU})

Tn(U)

behave? Previously, we had M = A, X equals counting measure, and ¢(p) = J,, so
% Yoy @(pi) was the empirical distribution of p.

Proposition 1.1. There exists some s : U — [—00, 00| such that

N (U)) = esWntoln) vy ey,

Proof. Observe that if p € T,,(U) and g € T,,(U) and r = pq is the concatenation, then

1 n+m
n+m;¢(n)—n+m nZsOpz —_ stoqz



liesin U if 2 3% o(p;) € U and L 3" o(p;) € U, ice. Ty (U) 2 To(U) x Tro(U). So
NPT, (U) 2 NTW(U) - X (T (U)).

Take logs to get superadditivity. This gives

S(U) = lim % log \™(T(U))

an/n
1
= sup — log \*"™(T,,(U)),
n n
provided that either a,, = —oo for all n or a, # —oo for all sufficiently large n. We will
complete the proof next time. ]
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